
Chapter 1

Concurrent Task Trees

Recap

Slide Context Toolkit:

• Context Toolkit

– Context Abstraction

– Design Methodology

1.1 Task Models

Slide HCI Lecture Summary:

• Theories

– Levels-of-analysis

– Stages-of-action

– GOMS

– Widget-level

– Context-of-use

– Object Action Interface models

1

Slide Describing user interaction:

• Remember GOMS - Goals, Operators, Methods, Selection Rues

• The user wants to reach a Goal, he uses Operators and Methods that he selects via
Selection Rules

• With GOMS, we can look at a sequence of Methods and analyze it.

• We can analyze a system using GOMS, but a GOMS model does not tell us how to
implement a system

• Question: How can a GOMS-like system support development?

• A Task Model can be used to guide the implementation.

Slide Task Model:

• Task models indicate the logical activities that an application should support to reach
users’ goals.(Paterno, 1999)

• Goals are either state changes or inquiries

• Tasks can be highly abstract or very concrete

• Task models can be build for existing systems, future systems and for the user’s view
of the system

• Task models are formalized, other methods are often informal

Slide What’s the use of a Task Model?:

• Understand the application domain

• Record the result of user discussions

• Support effective design

• Support usability evaluation

• Directly support the user in using the system

• Documentation

2

Slide Task Model Representation:

• GOMS can represent a task model

• GOMS is mainly textual

• GOMS cannot represent concurrency, interruption, order independence, optionality
and iteration.

• Alternative: ConcurTaskTrees (Paterno, 1999)

1.2 ConcurTaskTrees

Slide ConcurTaskTrees:

Image from Paterno, 1999

Slide CTT: Features:

• Hierarchical structure

• Graphical Syntax

• Many temporal operators

• Focus on activities

3

1.2.1 Temporal Operators

Slide CTT: Temporal Operators:

• Hierarchy

Image from Paterno, 1999

Slide CTT: Temporal Operators:

• Enabling

Image from Paterno, 1999

Slide CTT: Temporal Operators:

4

• Choice

Image from Paterno, 1999

Slide CTT: Temporal Operators:

• Enabling with information passing

Image from Paterno, 1999

Slide CTT: Temporal Operators:

• Concurrent Tasks

Image from Paterno, 1999

Slide CTT: Temporal Operators:

5

• Concurrent Communicating Tasks

Image from Paterno, 1999

Slide CTT: Temporal Operators:

• Task Independence

Image from Paterno, 1999

Slide CTT: Temporal Operators:

• Disabling

Image from Paterno, 1999

6

Slide CTT: Temporal Operators:

• Suspend-Resume

Image from Paterno, 1999

1.2.2 Examples

Slide CTT: iterative task:

• Task sequence with iteration: only the last transition ends the iteration

Image from Paterno, 1999

Slide CTT: optional tasks:

• Optional Tasks are marked with [and] brackets

7

Image from Paterno, 1999

Slide CTT: inheritance of temporal constraint:

• ShowAvailability inherits the temporal constraint (executed after SelectRoomType)
from its parent MakeReservation

Image from Paterno, 1999

8

Chapter 2

Abstract and Wearable UIs

Slide Wearable UIs:

• Supporting a primary task, i.e. UI driven by external task

• Context-dependent (primary task is one context source)

• Non-”point-and-click”, i.e. No WIMP-based UI

• Sometimes no graphical UI at all

• Rich set of in- and output devices

• Question: How to write (and reuse) code for “generic” wearable computer?

2.1 Abstract UIs

Slide Characterizing Wearable UIs:

• Displaying information and changing state (like CTTs)

• Additionally: Context information

– Context-dependent presentation

– context includes input and output modes and devices available

– Context change triggers information display / state change

• Idea:

9

– specify abstract UI using CTTs

– use context change triggers like input in CTTs

– decide context-dependent presentation during runtime

Slide Context-dependent presentation:

• Example: a web browser with two presentation modes

– Desktop mode: Like firefox

– Mobile mode: like opera “small screen rendering”

• Specification of UI (= html document, links) the same

• “Rendering” of UI different:

– Compress graphics, change positions, use different fonts

– Change interaction: no mouse click, but chose links via cursor keys

Slide Abstract Specification:

• Simple Example: Write Aircraft Repair Report

– Input text of repair report

– Indicate that the repair report entered is complete

• i.e. use CTT to specify abstract model

• Web browser equivalent: Form

– Text input field

– “submit” button

[fragile] Slide AWT implementation:

• PDA: Java 1.2 (AWT)

10

1 Panel p = new Panel();
2 p.add(new Label ("Enter Report");
3 TextField tf = new TextField("Your Report Here",256);
4 p.add(tf);
5 Button b = new Button("Save");
6 p.add(b);

� �

private void makeTextInput(Container c, TextInputItem i, int depth) {
Panel p = new Panel();
p.setLayout(new FlowLayout(FlowLayout.LEFT));
if(depth == 0) {

c.add(p);
} else {

c.add(p, BorderLayout.NORTH);
}

p.add(new Label(i.getDescription().getText()));

TextField tf = new TextField(i.getInput(), i.getExpectedLength());
TextInputListener l = new TextInputListener(this, i, tf);
tf.addTextListener(l);
mActions.add(l);
p.add(tf);

}
� �

[fragile] Slide Swing implementation:

• Desktop: Java 5 (Swing)

1 JPanel p = new JPanel();
2 p.add(new JLabel ("Enter Report");
3 JTextField tf = new JTextField("Your Report Here",256);
4 p.add(tf);
5 JButton b = new JButton("Save");
6 p.add(b);

[fragile] Slide QT implementation:

• QT 4

1 QLabel *reportLabel = new QLabel(tr("Enter report"));
2 QTextEdit *reportEdit = new QTextEdit;
3 QPushButton *saveButton = new QPushButton(tr("Save"));
4 myLayout = new QHBoxLayout;
5 myLayout->addWidget(reportLabel);

11

6 myLayout->addWidget(reportEdit);
7 myLayout->addWidget(saveButton);

Slide Abstract to concrete:

• How to get from abstract to concrete?

• Idea 1: Use an expert programmer, give him the spec, let him program, use result

• How about different devices?

• Idea 1a: Use expert for every possible device, send to expert programmer, let them
work together.

• How about different contexts?

• Idea 1b: Use domain expert to describe contexts, send to device expert to design
context-dependent optimal display for specific device, send to programmer, program

• Only viable for small number of devices and huge sales. i.e. mobile phone games

Slide Abstract to concrete (2):

• Can we do without all these experts?

• Idea 2: Divide the application program in two parts: The abstract UI and the renderer

• How about different devices?

• The renderer can be device-specific: It knows best how to use UI elements of the
target device

• How about different contexts?

• The renderer itself can use context information in a device-specific way

• The abstract UI can choose from a number of available renderers. This choice can
be based on device availability, user preference, context.

[fragile] Slide AbstractUI implementation:

12

• AbstractUI

1 mSave = new TriggerItem2(
2 new TextData("Save"), false, this);
3 mComment = new TextInputItem2(
4 new TextData("Comment"),
5 20, "Your text here",this);
6 mComment.setNext(mSave);
7 mRoot = new GroupItem2(
8 new TextData("Write Repair Report"),
9 this);

10 mRoot.setSub(mComment);

Slide Open questions:

• Fundamental question: What can the AbstractUI express?

– Speech-driven UI?

– How to deal with non-renderable objects? (picture on audio-UI)

• Technical question: How can we implement it?

– How can we specify an AbstractUI Model? XML?

– How can the renderer decide what subtree of the CTT it renders? on-demand
query mechanism?

2.2 Wearable UIs

Slide Wearable UI Methaphor:

• Output Mechanism

– Visual: HMD

– Audio

• Input Mechanism

– Keys: Keyboard, Twiddler

– Hands: gestures, direct manipulation

– Speech

• Interaction Methods

13

– menu selection, direct manipulation, form fillin

– command language, natural Speech

Slide Winspect GUI:

• Java Implementation

• Uses HMD and “hands-free interaction”

• GUI elements optimized for wearable use

– Colors, font sizes, highlighting

• Interaction based on dataglove

– Direct Manipulation: Motion, Turn

– Gesture for selection

Slide Winspect UI HMD:

Image from T. Nicolai

Slide Winspect Direct Manipulation:

14

Image from T. Nicolai

Slide WearableUI:

• Renderer for AbstractUI

• Uses HMD and “hands-free interaction”

• GUI elements optimized for wearable use

– Colors, font sizes, highlighting

– Few elements displayed

– shows in the area of visual focus

• Interaction based on dataglove

– Hand gestures to navigate and select

– Additional keyboard for text entry

Slide Wearable UI Gesture:

15

Image from H. Witt

Slide Wearable UI Glove:

Image from H. Witt

Slide Wearable UI HMD:

Image from H. Witt

16

Chapter 3

Wearable Evaluation

Recap

Slide Abstract/Wearable UI:

• AbstractUI

– Device-independent

– Context-aware

• WearableUI

– Uses AbstractUI

– Wearable interaction mode

3.1 Adaptive UIs

Slide WUI-Development:

17

Image from H. Witt

Slide WUI-Structure:

Image from H. Witt

Slide Adaptive UIs:

• Why adapt an UI?

• UI can be optimized due to changes in environmental context

– Light conditions

– User motion

– Environmental noise

• UI cannot be controlled anymore under current context

– affected by user activities

– interaction device failure (e.g. low battery)

18

Slide Layers of adaptation:

Image from H. Witt

Slide Finding adaption rules:

• How to find rules for adaptation?

• What’s the user reaction on adaptation?

3.2 Wearable Evaluation

Slide Wearable Evaluation:

• How to measure the performance of a wearable system?

• Remember: Supporting a primary task

• Idea: measure the performance in the primary task.

• Example: Wearable Maintenance support

19

– Time

– Quality

Slide Wearable Evaluation (2):

• Drawbacks:

– Long time needed

– Variation in users/Tasks: Even more time needed

– System has to be built and integrated to be evaluated

– What if evaluation outcome is negative?

• Real-world evaluations are rare

Slide Wearable Evaluation (3):

• Idea: Implement parts of the system in a lab.

• “Living Lab” approache

• Question: How to simulate primary task in the lab?

• Aspects of the primary task:

– Physical Task

– Cognitive Task

– Attention

Slide Physical tasks:

• Simple tasks: Walking, running, biking

• Strenuous tasks: running fast, carrying loads

• Manipulative tasks: push buttons, operate machines, use tools, select tools

• Precision tasks: handle tools carefully, avoid damage and spills

20

• Also physical tasks: input (e.g. gesture input)

• Body has physical limits: accuracy, force, energy limits

Slide Cognitive tasks:

• Simple tasks: Reading, Listening, Identify objects, following signs, “matching tasks”

• Complex tasks: calculations, translations, geometric tasks (see your favourite IQ
test)

• Also cognitive tasks: input, understanding output

• Analog to physical limits: “cognitive load” limit

• cognitive load varies with age, familiarity with task, between persons

Slide Matchingtask:

Image from H. Witt

Slide Attention !:

• Both physical and cognitive tasks need attention

• Attention is limited

21

• e.g.: you can only memorize a small (5-11) Number of things at the same time in
your short time memory

• Some brain functions have limits: Humans only have one motor cortex

• Degrading attention leads to degraded performance: Precision lowers, reaction time
rises, task execution takes longer

• Divided attention: affected by task similarity, task difference, practice

Slide Measuring performance:

• Idea: Use this information to craft artificial tasks to measure performance

• Cognitive taks: simple but measurable tasks, measure execution time and correctness

• Examples: Matching tasks, find repetitions in letter sequences, . . .

• Physical tasks: Not too easy, but easy to measure

• Examples: Pushing buttons , “Hotwire experiment”

• Experiment:

– Measure physical task w/o cognitive task

– Measure cognitive task w/o physical task

– Measure both together

Slide The Hotwire experiment:

• Origin: Children’s game, used to train hand-eye-coordination

• Conductive wire, bent in different shapes

• Conductive loop tool

• Task: move the loop tool over the wire without touching the wire

Slide Hotwire:

22

Image from H. Witt

Slide Interruption by cognitive task:

• Interruption studies: Well-known approach in HCI evaluation

• Matching task is presented to the user on a HMD

• Answer is given with gesture interface

• Different ways to present cognitive task

– Immediate

– Negociated

– Scheduled

– Mediated

Slide Hotwire-Task:

23

Image from H. Witt

Slide Measuring Hotwire performance:

• Time (to complete wire task)

• Contacts (tool-wire)

• Error rate (in matching task)

• Average age (Answer time for matching task)

Slide Results:

24

Image from M. Drugge, H. Witt, ISWC06

Slide Results:

• Tasks have an influence to eachother

• Matching error rate almost unchanged

• Effect of the interruption methods

– on Time: negotiated methods take longer

– on Contacts: negociated methods have more errors (additional interaction)

– on Error: nothing

– on Average Age: unclear, side effects disturbe result

Slide Larger Hotwire (on CeBit):

Image from mrc

Slide Summary:

• Task Trees

– Formal specification of user interaction

– Can be used to support development

25

• ConcurTaskTrees

– Temporal Operators

– Examples

• AbstractUI

– Device-independent

– Context-aware

• WearableUI

– Uses AbstractUI

– Wearable interaction mode

• Evaluating wearable interfaces

– simulate primary task

– study effects of wearable use

– use standardized experiments and measures for comparable results

26

