Chapter 1

Concurrent Task Trees

Recap

Slide Context Toolkit:

e Context Toolkit

— Context Abstraction
— Design Methodology

1.1 Task Models

Slide HCI Lecture Summary:

e Theories

— Levels-of-analysis

Stages-of-action
GOMS
Widget-level
Context-of-use

Object Action Interface models

Slide Describing user interaction:

Remember GOMS - Goals, Operators, Methods, Selection Rues

The user wants to reach a Goal, he uses Operators and Methods that he selects via
Selection Rules

With GOMS, we can look at a sequence of Methods and analyze it.

We can analyze a system using GOMS, but a GOMS model does not tell us how to
implement a system

Question: How can a GOMS-like system support development?

A Task Model can be used to guide the implementation.

Slide Task Model:

Task models indicate the logical activities that an application should support to reach
users’ goals.(Paterno, 1999)

Goals are either state changes or inquiries

Tasks can be highly abstract or very concrete

Task models can be build for existing systems, future systems and for the user’s view
of the system

Task models are formalized, other methods are often informal

Slide What’s the use of a Task Model?:

Understand the application domain

Record the result of user discussions

Support effective design

Support usability evaluation

Directly support the user in using the system

Documentation

Slide Task Model Representation:

GOMS can represent a task model

GOMS is mainly textual

GOMS cannot represent concurrency, interruption, order independence, optionality
and iteration.

Alternative: ConcurTaskTrees (Paterno, 1999)

1.2 ConcurTaskTrees

Slide ConcurTaskTrees:

&
_ srabigpriame.._

B —-—8
Switch on___—Haridle communEation-—__SwitchOrt
P
___:aqnéo":’f_iiiuwl____ 3
.2 RO g 8

-]
Display Wrter PIN° Enter PIN - Connact to netwark Show Time-Barteny-Connectvity Desid

[o 500

bac_Prassves Presso Tools Setmings

o
Newtluinbar

i N oy
= / , -
F--E-r--0-%

Selectlist SelecIMIMEENITNImE SnowNUmbF

] :
L—v—H
RecallNumber EnterNumber

Image from Paterno, 1999

Slide CTT: Features:

Hierarchical structure

Graphical Syntax

Many temporal operators

Focus on activities

1.2.1 Temporal Operators

Slide CTT: Temporal Operators:

e Hierarchy

Image from Paterno, 1999

Slide CTT: Temporal Operators:

Choose courses Enrollin courses

e Enabling

Image from Paterno, 1999

Slide CTT: Temporal Operators:

&2

Ac s Web-Site

) 1] «

Browse Web Site Access Specific Informal

e Choice

Image from Paterno, 1999

Slide CTT: Temporal Operators:

o)

Perform q
b 0>> L 3
Specify query Generate results
e Enabling with information passing
Image from Paterno, 1999
Slide CTT: Temporal Operators:
Checlovera d
& 1l 2
Check terms Check courses workload

e Concurrent Tasks

Image from Paterno, 1999

Slide CTT: Temporal Operators:

€

ne

L i

Show Calendar Enter Data

e Concurrent Communicating Tasks

Image from Paterno, 1999

Slide CTT: Temporal Operators:

o)

Ins SO re

b I=| @@

Register Implement installation

e Task Independence

Image from Paterno, 1999

Slide CTT: Temporal Operators:

Fillirig a
b > i
Input data* Send the form

e Disabling

Image from Paterno, 1999

Slide CTT: Temporal Operators:

B > <
Edit data* Modal print

e Suspend-Resume

Image from Paterno, 1999

1.2.2 Examples

Slide CTT: iterative task:

et
Accesshitlse i
%— == _= 0== R == —F—-.- == :a’— [= —-&'-_._]
SelectMuseum St tionsList Decid i terest SelectSeclion ShowWorksLisl® CloseCt igat

e Task sequence with iteration: only the last transition ends the iteration

Image from Paterno, 1999

Slide CTT: optional tasks:

_Q
/___7__.~—’H'andle ‘?quwh‘h-q_,__ﬂ_
T \ emanl
: £ > 2] s }
_——Specily request—— _ Send request Provide result
T = “l\ e, B resy| .
F—in—F—i—®8. n—1H £—ii—X

Specify departure Specify amival [Specify type of seal] [Specify smoking seat] Presentresull Presenl error msg

e Optional Tasks are marked with [and | brackets

Image from Paterno, 1999

Slide CTT: inheritance of temporal constraint:

@

HotelReservati

& I>>

%‘ u 1%9 []>> —E

SeleciSingleRoom SelectDoubleRoom ShowAvailahility SelectRoom

e ShowAuvailability inherits the temporal constraint (executed after SelectRoomType)
from its parent MakeReservation

Image from Paterno, 1999

Chapter 2

Abstract and Wearable Ul s

Slide Wearable Uls:

Supporting a primary task, i.e. Ul driven by external task

Context-dependent (primary task is one context source)

Non-"point-and-click”, i.e. No WIMP-based Ul

Sometimes no graphical Ul at all

Rich set of in- and output devices

Question: How to write (and reuse) code for “generic” wearable computer?

2.1 Abstract Uls

Slide Characterizing Wearable Uls:

e Displaying information and changing state (like CTTs)
e Additionally: Context information

— Context-dependent presentation
— context includes input and output modes and devices available
— Context change triggers information display / state change

o Idea:

— specify abstract Ul using CTTs
— use context change triggers like input in CTTs
— decide context-dependent presentation during runtime

Slide Context-dependent presentation:

e Example: a web browser with two presentation modes

— Desktop mode: Like firefox
— Mobile mode: like opera “small screen rendering”

e Specification of Ul (= html document, links) the same
e “Rendering” of Ul different:

— Compress graphics, change positions, use different fonts
— Change interaction: no mouse click, but chose links via cursor keys

Slide Abstract Specification:

e Simple Example: Write Aircraft Repair Report

— Input text of repair report
— Indicate that the repair report entered is complete

e i.e. use CTT to specify abstract model
e \Web browser equivalent: Form

— Text input field
— “submit” button

[fragile] Slide AWT implementation:

e PDA: Java 1.2 (AWT)

10

1 Panel p = new Panel ();

2 p. add(new Label ("Enter_Report");

3 TextField tf = new TextFi el d("Your _Report_Here", 256);
4 p.add(tf);

s Button b = new Button("Save");

6 p. add(b);

private void makeText | nput(Container c, Textlnputltemi
Panel p = new Panel ();
p. set Layout (new Fl owLayout (Fl owLayout. LEFT));
if(depth == 0) {
c.add(p);
} else {
c.add(p, BorderLayout.NORTH);

}

p. add(new Label (i.getDescription().getText()));

Text I nput Li stener | = new Text | nputListener(this,
tf.addTextListener(|);

mActi ons. add(|);

p.add(tf);

TextField tf = new TextField(i.getlnput(), i.getExpectedLer

int deg

tf),

[fragile] Slide Swing implementation:

e Desktop: Java 5 (Swing)

1 JPanel p = new JPanel ();

2 p. add(new JLabel ("Enter_Report");

3 JTextField tf = new JText Fi el d(" Your Report _Here", 256);
4 p.add(tf);

s JButton b = new JButton("Save");

6 p. add(b);

[fragile] Slide QT implementation:

e QT4

1 QLabel *reportlLabel = new QLabel (tr("Enter _report"));
2> QTextEdit *reportEdit = new QlextEdit;

3 QPushButton *saveButton = new QPushButton(tr("Save"));
4+ nyLayout = new QHBoxLayout;

s myLayout - >addW dget (r eport Label);

11

th) {

gth());

s myLayout - >addW dget (report Edit);
7 myLayout - >addW dget (saveButt on) ;

Slide Abstract to concrete:

How to get from abstract to concrete?

Idea 1: Use an expert programmer, give him the spec, let him program, use result

How about different devices?

Idea 1a: Use expert for every possible device, send to expert programmer, let them
work together.

How about different contexts?

e Idea 1b: Use domain expert to describe contexts, send to device expert to design
context-dependent optimal display for specific device, send to programmer, program

Only viable for small number of devices and huge sales. i.e. mobile phone games

Slide Abstract to concrete (2):

Can we do without all these experts?

Idea 2: Divide the application program in two parts: The abstract Ul and the renderer

e How about different devices?

The renderer can be device-specific: It knows best how to use Ul elements of the
target device

e How about different contexts?

The renderer itself can use context information in a device-specific way

The abstract Ul can choose from a number of available renderers. This choice can
be based on device availability, user preference, context.

[fragile] Slide AbstractUl implementation:

12

e AbstractUl

1 nBave = new Triggerltenm(

2 new Text Data("Save"), false, this);
3 mConment = new Text | nputlten®(

4 new Text Data("Comment"),

5 20, "Your _text_here",this);

6 mMConment . set Next (nBSave);

7 mMRoot = new Grouplten(

8 new Text Data("Wite_Repair_Report"),
9 this);

10 MRoot . set Sub(mConment) ;

Slide Open questions:

e Fundamental question: What can the AbstractUl express?

— Speech-driven UI?
— How to deal with non-renderable objects? (picture on audio-UlI)

e Technical question: How can we implement it?

— How can we specify an AbstractUl Model? XML?

— How can the renderer decide what subtree of the CTT it renders? on-demand
query mechanism?

2.2 WearableUIs

Slide Wearable Ul Methaphor:

e Output Mechanism

— Visual: HMD
— Audio

e Input Mechanism

— Keys: Keyboard, Twiddler
— Hands: gestures, direct manipulation
— Speech

e Interaction Methods

13

— menu selection, direct manipulation, form fillin
— command language, natural Speech

Slide Winspect GUI:

Java Implementation

Uses HMD and “hands-free interaction”

GUI elements optimized for wearable use

— Colors, font sizes, highlighting

Interaction based on dataglove

— Direct Manipulation: Motion, Turn
— Gesture for selection

Slide Winspect Ul HMD:

Inspektor: Alexander, Goldberg 08.12.2000 12:36:17

Kran 29

O

Motorkupplung (Tschan) 5

Untersuchung: Klauenring

Nicht geprueft

@ Technisch in Ordnung

Keparatur / Austauscn sorert

Reparatur / Austausch naechster Stillstand
Reparatur / Austausch gelegentlich
Abbruch

Image from T. Nicolai

Slide Winspect Direct Manipulation:

14

Image from T. Nicolai

Slide WearableUI:

o Renderer for AbstractUl

Uses HMD and “hands-free interaction”

GUI elements optimized for wearable use

— Colors, font sizes, highlighting
— Few elements displayed
— shows in the area of visual focus

Interaction based on dataglove

— Hand gestures to navigate and select
— Additional keyboard for text entry

Slide Wearable Ul Gesture:

15

Image from H. Witt

Slide Wearable Ul Glove:

Image from H. Witt

Slide Wearable Ul HMD:

Content column Menu column Empty

| Title bar

Deck: Main Deck

Location: Cabin Zone, 17 E-F Area List
Major Function: Lighting

Component: Seatbelt Sign Parts

Application
— elements
Defect: Inoperative Troubleshoot
Severity: Medium
Comment:
Status: open
MEL CDL Reference: 1234

History bar

Image from H. Witt

16

Chapter 3

Wear able Evaluation

Recap

Slide Abstract/\Wearable Ul:

e AbstractUlI

— Device-independent
— Context-aware

o WearableUI

— Uses AbstractUlI
— Wearable interaction mode

3.1 AdaptiveUls

Slide WUI-Development:

17

Ab.'-’.lﬂcl.u\ Model

Application

Application
Developsr

Image from H. Witt

Framework
Davelopar

Component
7 context Ndevice wuser p
; \\lnfarmallcln‘:,ﬁnrmaum—.j,ﬂrmabon,/' :)

Wearable User Interface _’

Wearable Ul

L egrena hry ale —

Slide WUI-Structure:

Application

WUI-Toolkit

AUIDL

Context Information

Envirenment

L

L}

1]

L

L]

L]

L

L

1]

/O Devices :
L]

1

L

1]

Aciivity i
L]

L]

1

L}

Image from H. Witt

. Abstract Ul Model

Presentation Component

" Adaptation Component -

wul

Context Observer

WuUI-Component
Repository

Slide Adaptive Uls:

e Why adapt an UI?

e Ul can be optimized due to changes in environmental context

— Light conditions
— User motion

— Environmental noise

e Ul cannot be controlled anymore under current context

— affected by user activities

— interaction device failure (e.g. low battery)

18

Slide Layers of adaptation:

Image frol

(73]
% Interaction Hardware
[ah]
= Interaction Style
=]
48]
=] Structure
L4 b
=
= Layout
3
Look and Feel

m H. Witt

Slide Finding adaption rules:

How to find rules for adaptation?

What’s the user reaction on adaptation?

3.2

Wear able Evaluation

Slide Wearable Evaluation:

How to measure the performance of a wearable system?
Remember: Supporting a primary task
Idea: measure the performance in the primary task.

Example: Wearable Maintenance support

19

— Time
— Quality

Slide Wearable Evaluation (2):

e Drawbacks:

Long time needed
Variation in users/Tasks: Even more time needed

System has to be built and integrated to be evaluated

What if evaluation outcome is negative?

e Real-world evaluations are rare

Slide Wearable Evaluation (3):

Idea: Implement parts of the system in a lab.

“Living Lab” approache

Question: How to simulate primary task in the lab?

Aspects of the primary task:

— Physical Task
— Cognitive Task
— Attention

Slide Physical tasks:

e Simple tasks: Walking, running, biking

Strenuous tasks: running fast, carrying loads

Manipulative tasks: push buttons, operate machines, use tools, select tools

Precision tasks: handle tools carefully, avoid damage and spills

20

e Also physical tasks: input (e.g. gesture input)

e Body has physical limits: accuracy, force, energy limits

Slide Cognitive tasks:

Simple tasks: Reading, Listening, Identify objects, following signs, “matching tasks”

Complex tasks: calculations, translations, geometric tasks (see your favourite 1Q
test)

Also cognitive tasks: input, understanding output

Analog to physical limits: “cognitive load” limit

cognitive load varies with age, familiarity with task, between persons

Slide Matchingtask:

Match by colour

® A

Image from H. Witt

Slide Attention !:

e Both physical and cognitive tasks need attention

e Attention is limited

21

e e.g.: you can only memorize a small (5-11) Number of things at the same time in
your short time memory

e Some brain functions have limits: Humans only have one motor cortex

e Degrading attention leads to degraded performance: Precision lowers, reaction time
rises, task execution takes longer

o Divided attention: affected by task similarity, task difference, practice

Slide Measuring performance:

Idea: Use this information to craft artificial tasks to measure performance

Cognitive taks: simple but measurable tasks, measure execution time and correctness

Examples: Matching tasks, find repetitions in letter sequences, ...

Physical tasks: Not too easy, but easy to measure

Examples: Pushing buttons , “Hotwire experiment”

Experiment:

— Measure physical task w/o cognitive task
— Measure cognitive task w/o physical task
— Measure both together

Slide The Hotwire experiment:

Origin: Children’s game, used to train hand-eye-coordination

Conductive wire, bent in different shapes

Conductive loop tool

Task: move the loop tool over the wire without touching the wire

Slide Hotwire:

22

Image from H. Witt

Slide Interruption by cognitive task:

Interruption studies: Well-known approach in HCI evaluation

Matching task is presented to the user on a HMD

Answer is given with gesture interface

Different ways to present cognitive task

Immediate

Negociated
Scheduled
— Mediated

Slide Hotwire-Task:

23

Image from H. Witt

Slide Measuring Hotwire performance:

Time (to complete wire task)
Contacts (tool-wire)

Error rate (in matching task)

Average age (Answer time for matching task)

Slide Results:

140000

e v

‘
Hotwire Vs
onty

(a) Time

eror e
83
=

Mah Vs Aud. Son Imm. Med
oy

(c) Error rate

Aue Sch imm. Med.

contacts

milisaconds

Hotwire Vis,

18000
16000
14000
12000
10000
8000
6000
4000
2000

o 1N

Aud. Sen. Imm. Med.
only

(b) Contacts

:1‘ ‘,

Mach Vs, Aud. Sch. Imm. Mad.
only

(d) Average age

Figure 5. Averages of user performance.

24

Image from M. Drugge, H. Witt, ISWCO06

Slide Results:

e Tasks have an influence to eachother
e Matching error rate almost unchanged
o Effect of the interruption methods

— on Time: negotiated methods take longer

on Contacts: negociated methods have more errors (additional interaction)

on Error: nothing
on Average Age: unclear, side effects disturbe result

Slide Larger Hotwire (on CeBit):

Image from mrc

Slide Summary:

e Task Trees

— Formal specification of user interaction
— Can be used to support development

25

ConcurTaskTrees

— Temporal Operators
— Examples

AbstractUl

— Device-independent
— Context-aware

WearableUI

— Uses AbstractUlI
— Wearable interaction mode

Evaluating wearable interfaces

— simulate primary task
— study effects of wearable use
— use standardized experiments and measures for comparable results

26

