
Control questions set

IUB – 2003, semester 2

Operating System & Networks

Uwe R. Zimmer

1. Introduction to operating systems

(1)

What is the function of an operating system?

(2)

In which circumstances is an operating system

not

required?

(3)

What are the features of a µkernel based operating
system?

(4)

Why are many modern operating systems so big in
relation to operating systems of the size of a few KB,
(also delivering basic OS-functionality)?

2. Hardware basics

2.1. General computer architecture

(5)

What is the minimal set of components which
would make up a computer system? Which if these
components can be integrated on one chip?

(6)

What are the possibilities to support the design of
an operating system by means of a well designed
hardware?

2.2. CPU

(7)

What would be a minimal register set for a CPU?

(8)

Are all CPU registers of the same size? How wide
(in terms of bits) need a universal register, a stack
pointer, and the condition code register need to be
at least?

(9)

What kind of information do you expect to find on
the stack? Explain what kind of programming lan-
guage you are assuming. Do you always need a use
a stack for passing parameters to subroutines?

(10)

When enhancing the I/O performance of a small 8-
bit controller: would you prefer to replace it with a
16-bit version, or to double the CPU-clock frequen-
cy? Which additional information would you re-
quest?

(11)

What is the minimal hardware support you need to
expect for interrupt processing? Which parts of your
system are going to implement this support?

(12)

How would you implement a system, which needs
to be very responsive to interrupts, e.g. need to re-
spond to external events in a defined time-span?

(13)

What kind of support can you hope for from an op-
erating system, when you need to receive external
interrupts at the level of a user-task?

(14)

Are interrupts buffered anywhere in the system?

(15)

Put signals, traps, exceptions, and interrupts in rela-
tion.

(16)

Can you implement memory protection without
privileged instructions?

(17)

How do you execute a privileged instruction while
in a user-level task?

2.3. Memory

(18)

Why is precise knowledge about the cache configu-
ration essential for an efficient and/or predictable
operating system implementation?

(19)

In which situations is a cache improving the transfer
rates? What level of speed-up could you expect at
the best and at the worst?

Chapter: Processes 2

2.4. I/O systems

(20)

Is it possible to construct a computer system with-
out I/O devices?

(21)

Assuming your system is also using direct memory
access (DMA) to transfer data between your I/O de-
vices and the main memory. Will you give the CPU
or the DMA controller the higher priority on the
main system bus?

(22)

When would you

not

 apply interrupt driven pro-
gramming?

2.5. Some examples of µprocessors

(23)

What makes the difference between a µprocessor
and a µcontroller?

(24)

Power consumption is a major aspect of many
µcontroller applications. In which range would you
expect to the power consumption to be for a typical
modern µcontroller.

3. Processes

3.1. Processes and threads

(25)

What is the difference between general multiproc-
essing and symmetric multiprocessing? What does
this difference imply for the operating system?

(26)

What are the major issues, which needs to be ad-
dressed, if you enhance a single-task operating sys-
tem to a multi-tasking operating system?

(27)

Name some applications, where a multi-threaded
(concurrent) implementation improves the overall
performance and some where it is required.

(28)

What are the alternatives to multi-threading, if you
need to keep a certain responsiveness, e.g. for user
requests?

(29)

After the operating system dispatched the CPU to a
process, how does the operating system itself get
access to the CPU again at a later stage (assuming
that the process is not terminating)?

(30)

Can you add or subtract CPUs from a running mul-
tiprocessing computer system?

(31)

When are the conditions under which the tasks in
the ‘blocked’ state are re-evaluated?

3.2. Shared memory based synchronization

(32)

Why is there a need for synchronization in the first
place?

(33)

What are the principal hassles of synchronization?

(34)

Synchronization is performed in computer systems
continuously and on all levels. Could you give
some examples from nature, where synchronization
occurs?

(35)

Do you need hardware support for the implementa-
tion of semaphores? Why?

(36)

What exactly distinguished a semaphore from a flag
based synchronization?

(37)

Give some reasons why to use semaphores, and
some why not to use them.

(38)

Implement a solution for the dining philosophers
problem (if you do not know it: look it up) by using
semaphores or monitors only.

(39)

Which kinds of waiting/blocking/suspension can be
implemented? Is it possible to avoid busy-waiting
on all levels? Is busy-waiting always less efficient?

(40)

Sketch a proof showing that protected objects,
monitors, conditional critical regions and sema-
phores are all equivalent in terms of their principal
synchronization capabilities, e.g. the same class of
synchronization problems can be solved by all or
none of them.

(41)

Discus an implementation of releasing nested mon-
itor calls in POSIX, e.g. if there is a call to a mutual
exclusive region from within a mutual exclusive re-
gion, the first lock might be released under certain
circumstances.

(42)

Which solution for the ‘multiple-tasks-in-monitor’
problem, when using conditional variables would
you prefer and why‘?

(43)

Spinlocks (a semaphore implementation) offer the
possibility to busy-wait on the release of a lock, if
the process holding the lock is currently running.
Explain under which circumstances this can be ap-
plied, and what are the potential benefits and prob-
lems.

(44)

Design an example, where object oriented expan-
sion breaks the consistency of a monitor, e.g. is in-
troducing a deadlock situation.

Chapter: Processes 3

3.3. Message based synchronization

(45)

Sketch a proof that message based synchronization
and shared memory based synchronization are
equivalent in terms of their principal synchroniza-
tion capabilities, e.g. the same class of synchroniza-
tion problems can be solved by all or none of them.
One way: try to emulate each of them with the oth-
er.

(46)

Compare message based synchronization and
shared memory based synchronization in terms of
speed/overhead.

(47)

Give examples when platform independent, typed
message passing systems are required and when a
non-formatted byte-stream transfers are sufficient.

(48)

How can you transfer class-attributes (assuming you
are using an object-oriented language) over a mes-
sage passing system. Hint: Ada is supplying routines
for the marshalling and un-marshalling of object
oriented (tagged) types. Java is supplying means of
referring to a class on another platform (not to pass
messages to it) - discuss what it takes to implement
these communications (for experts only – skip, if
you are not experienced in object oriented pro-
gramming).

(49)

Sketch an implementation which is transferring ar-
bitrary data-structures through a byte-stream chan-
nel using C++ and POSIX only.

3.4. Deadlocks

(50)

What is the difference between a safe, an unsafe,
and a deadlocked system?

(51)

On which basis can a system be declared ‘safe’?

(52)

What is the difference between a deadlock and a
lifelock?

(53)

In which systems would you suggest to implement
Banker’s algorithm?

(54)

What can be done, if a deadlock is detected?

(55)

Can a single process be deadlocked?

(56)

Determine the computational complexity of Bank-
er’s algorithm.

3.5. Scheduling

(57)

Which scheduling scheme would you suggest to
implement in your laptop operating system?

(58)

Which information about the processes in your lap-
top could you supply to the scheduler?

(59)

How is the scheduler gaining access to the CPU, in
order to pre-empt a process, which is currently run-
ning?

(60)

Why is FPS much more frequently implemented
and employed than EDF?

(61)

What is the definition of an ‘optimal’ priority order-
ing scheme in a FPS system?

(62)

What does the worst case response time analysis
provide (with respect to a simple utilization test)?

(63)

Give the computational complexities for the re-
sponse time analysis in case of EDF and FPS!

(64)

What are the possibilities to handle high-priority
unpredictable, asynchronous tasks in a hard real-
time environment?

(65)

List some features of practical task-sets, and de-
scribe how these might be addressed by a schedul-
ing algorithm!

(66)

Why should aperiodic/sporadic/unpredictable tasks
have a higher priority than periodic tasks in some
cases, and how do you still guarantee the schedula-
bility of the periodic task-set?

(67)

Explain the idea of the immediate ceiling priority
protocol.

(68)

Why are ceiling priority protocols superior to priori-
ty inheritance?

(69)

The worst case scenario for FPS is to release all
tasks at once. What is the worst case release order
for EDF?

Chapter: Memory 4

4. Memory

(70)

What services could be offered by an operating sys-
tem in terms of memory?

(71)

Which kind of memory module would you expect
to find in the operating system on your laptop?
Which optimization criteria would you apply?

4.1. Hardware structures (MMU)

(72)

Do you always need an MMU to implement virtual
memory?

4.2. Partitioning, Segmentation, Paging & Virtual
memory

(73)

Explain internal and external fragmentation.

(74)

In which systems is internal or external fragmenta-
tion a real problem?

(75)

Analyse the timing behaviours of different virtual
memory address translation schemes.

4.3. Virtual memory management algorithms

(76)

Which information would you collect before de-
signing a set of virtual memory management algo-
rithms?

(77)

What are the major possible disasters which could
happen, if the virtual memory management algo-
rithms are set up badly?

