final version:
Advanced Robotics, Volume 14, Number 1, pp 27 - 36, VSP International Science Publishers, 2000

On-board Control in the RoboCup Small Robots League

Andreas Birk and Holger Kenn and Thomas Walle
Artificial Intelligence Laboratory
Vrije Universiteit Brussel
{cyrano,kenn,thomas}@arti.vub.ac.be

Abstract

We present the most recent version of our RoboCube system, a special robot-controller
hand-tailored for players in the small robots league. The RoboCube is conceptualized to
implement players with as many on-board features as possible in an extremely flexible way.
For this purpose, the RoboCube provides significant computation power and memory as well
as a multitude of I/O-interfaces within the space-constraints. As it facilitates the use of many
sensors and effectors, including their on-board processing, the RoboCube allows to explore a
large space of different robots and team set-ups.

1 Introduction

The investigation of on-board control within RoboCup is an extremely interesting scientific issue
for two major reasons. First, it is directly related to one of the greatest intellectual challenges of our
time, namely the quest for a constructive understanding of intelligence. This aim to foster AT and
related disciplines has been a major goal of RoboCup right from its beginning [KAK*T97, KTS*97].

Second, the exploitation of on-board features is also related to an important technological devel-
opment, namely the emerging field of autonomous systems as networked embedded devices, i.e.,
computerized systems with sensors and effectors as well as standalone and communication capabil-
ities. Information Technology has significantly influenced our daily lives in the last decades and it
will continue to do so. But the potential of the increasing dominance of computer and networking
facilities has its limits as IT is restricted to the transport, provision, and processing of mere infor-
mation. In addition, there is the enormous possibility and the actual need to free devices, which
engage in physical perception and manipulation, from explicit and permanent human supervision.
For example e-commerce can only rise to its full potential if a multitude of autonomous systems
collaborates in an automated ordering, delivery, and reception of goods.

The two major properties of the small robots league, global sensing and severe size restrictions,
discourage to some extent the important investigation of on-board control. But they also have
positive effects. First of all, the global sensing eases quite some perception problems, allowing
to focus on other important scientific issues, especially team behavior. An indication for this
hypothesis is the apparent difference in team-skills between the small robots league and the midsize
league, where global sensing is banned. In RoboCup’98, teams in the small robots league managed

to demonstrate some real team behaviors, like e.g. passing of the ball. The teams in the midsize
league seemed not yet to be that far.

The size restrictions as a second point also have a beneficial aspect for the investigation of team-
behavior. The play-field of a ping-pong-table can easily be allocated in a standard academic
environment, facilitating games throughout the year. It is in contrast difficult to embed a regular
field of the midsize league into an academic environment, thus the possibilities for continuous
research on the complete team are here limited. The severe size restriction of the small robots
league has another advantage. These robots can be much cheaper as costs of electro-mechanical
parts significantly increase with size. Therefore, it is more feasible to build even two teams and to
play real games throughout the year, plus to include the team(s) in educational activities.

The rest of this article is structured as follows. In section 2, we introduce a classification of team
approaches based on possible basic components for players. With the help of this background, we
motivate the importance of fostering on-board features for the players. The third section deals
with our RoboCube system, a special robot-controller hand-tailored for players in the small robots
league. RoboCube’s basic properties, its design, and its implementation are described. It is shown
how RoboCube is conceptualized to implement players with as many on-board features as possible
in an extremely flexible way. Section 4 presents software aspects related to the RoboCube. First,
its BIOS is introduced. Furthermore, it is demonstrated with the example of path-planning that
highlevel control aspects can actually be implemented on board of the RoboCube. Section 5
concludes the article.

2 On-Board Features and their Motivations

2.1 Classification of Team-Approaches

An informal classification of approaches is proposed in [Asa98]. There, a first distinction is based
on the type of vision (local, global or combined) and the number of CPUs (one or multi). It is
also mentioned that in the case of multiple CPUs a difference between systems with and without
explicit communication between players can be made. Though this scheme is useful, it is still a
first, quite rough classification. Therefore, we propose here to make finer distinctions based on a
set of crucial components for the players.

In general, a RoboCup team consists of a (possibly empty) set of host-computers and off-board
sensors, and a non-empty set of players, each of which consist of a combination of the following
components:

1. minimal components

(a) mobile platform

(b) energy supply

(c) communication module
2. optional components

(a) computation power

(b) shooting-mechanism and other effectors

(c) basic sensors

(d) vision hardware

N = =
‘\ - ey
\ . .
‘l communication
1
! local vision
,
,
’ energy supply

— ___-unlimited

computation power

playe’r__ ‘}i / pressure JEEER. basic sensors
;) i g%atl)gg:r d T shooting mechanism
""" 'sizeconstraints /’ features I_-_l mobile platform

Figure 1: There are several basic components which can be, except the minimal ones, freely
combined to form a player. Situation A shows the most simple type of player, a radio-controlled
mobile platform. Situation B shows a more elaborated player.

Note, that the most simple type of player, consisting of only minimal components, is hardly a
robot. It is more like a “string-puppet” in form of a radio-controlled mobile platform without even
any on-board sensors or computation power (though it could well be possible that this type of
device has an on-board micro-controller for handling the communication protocol and the pulse-
width-modulation of the drive motors). The actual control of this type of players completely takes
place on the off-board host(s).

Based on this minimal type of player, the optional components can be freely combined and added.
In doing so, there is a trade-off between

1. on-board sensor/motor components,
2. on-board computation power, and

3. communication bandwidth.

A player can for example be built without any on-board computation power at the cost of com-
munication bandwidth by transmitting all sensor/motor-data to the host and back. So, increasing
on-board computation power facilitates the use of a smaller communication bandwidth and vice
versa. Increasing sensor/motor channels on the other hand increases the need of on-board compu-
tation power and/or communication bandwidth.

2.2 The Importance of On-Board Features

The exploitation of on-board features has, as already indicated in the introduction, several inter-
esting scientific aspects. The two major ones are

e its relation to the constructive investigation of intelligence, and

e its importance for the emerging technological field of autonomous systems.

2.2.1 On-Board Features for Robotics and AI

On-board features are important for research in robotics as well as AT and related disciplines for
several reasons. Mainly, they allow research on important aspects which are otherwise impossible
to investigate, especially in the field of sensor/motor capabilities. For effector-systems for example,
it is quite obvious that they have to be on-board to be within the rules of soccer-playing. Here, the
possibilities of systems with many degrees of freedom, as for example demonstrated in the SONY
pet dog [FK97], should not only be encouraged in special leagues as e.g. in the one for legged
players, but also within the small robots league.

In the case of sensors and perception, the situation is similar to the one of effector-systems, i.e.,
certain important types of research can only be done with on-board devices. This holds especially
for local vision. It might be useful to clarify here the often confused notions of local/global and
on-/off-board. The terms on- and off-board are easy to distinguish, general properties. They
refer to a piece of hardware or software, which is physically or logically present on the player
(on-board) or not (off-board). The notions of local and global in contrast only refer to sensors,
i.e., particular types of hardware, or to perception, i.e., particular types of software dealing with
sensor-data. Global sensors and perception tell a player absolute information about the world,
typically information about its position and maybe the positions of other objects on the playfield.
Local sensors and perception in contrast tell a player information about the world, which is relative
to its own position in the world. Unlike in the case of on- and off-board, the distinction between
local and global is fuzzy and often debatable. Nevertheless, it is quite clear that the important
issue of local vision can only be investigated if the related feature is present on-board of the player.

Hand in hand with an increased use of sensor and motor systems on a player, the amount of on-
board computation power must increase. Otherwise, the scarce resource of communication band-
width will be used up very quickly. Note, that there are many systems using RF-communication
at the same time during a RoboCup tournament. Especially in the small robots league, were only
few and very limited off-the-shelf products suited for communication exist, transmission of large
amount of data is impossible. It is for example quite infeasible to transmit high-resolution local
camera images from every player to a host for processing.

2.2.2 Autonomous Systems

In addition to the relevance of on-board features for research in robotics as well as Al and related
disciplines, they are also of high interest for research on autonomous systems, i.e., computerized
systems with sensors, motors and some on-board intelligence, which allows them to interact with
similar devices and which frees them from permanent and explicit human supervision. Research
on this type of devices is a vastly growing field and they are predicted to be a key technology of
the starting millennium. Often, single mobile robots are explicitly or implicitly used as defining
example for an autonomous system, see e.g. [Ste95, Mae90, HG87]. Note, that here a slightly wider
notion of an autonomous system is sketched. It includes the interaction of multiple systems and it
is not, only limited to robots in a classical sense.

The main reason for the commercial relevance of this type of autonomous system is the continuously
increasing amount of networking. With increasing availability and capacities, the use of networking
facilities goes more and more beyond the mere transport, processing and provision of information.
Starting with the current boom in “simple” teleoperation, actual physical manipulation through
networked devices gets more and more important. The full potential of electronic commerce for
example can only be reached, if a multitude of physical devices cooperate autonomously on the
delivery of goods. Take for example an autonomous household, where the refrigerator and other
devices keep accounts of goods, re-order if necessary, schedule transports from the “goods-port”
at the front-door, and so on.

An advantage of the study of autonomous systems over the field of mere software agents [JW9S§]
is the relation of autonomous systems to the real world. Autonomous systems are and have
to be grounded in physical concepts, leading to several concrete benefits. First of the all, the
real world and especially some “limited” environments as e.g. households, offices, and factories
establish a better defined context than some abstract information space. Different scientists,
designers, and manufactures of devices are much more likely to share common ideas and principles,
which are reflected in the theory and technology of these systems. Second, for basic issues of
autonomous systems, for example sensing, manipulation, mobility, there is the possibility to profit
from the advanced status of already existing fields, like especially robotics. Last but not least, the
real world provides, in combination with the sensors and motors, a supplementary and especially
unambiguous information channel. Imagine for example the possibility of autonomous devices to
schedule their activities to save energy. This is can range from a simple exploitation of lower
electricity prices in certain periods of the day to an elaborated adaptation to an unpredictable
supply from solar energy'. In this context, devices already can coordinate their activities just by
individual adaptation based on measuring supply and consumption.

For autonomous systems, there are two major tasks that have to be accomplished. On the techno-
logical side, embedded devices have to be developed that provide sufficient sensor/motor interfaces
and that allow for network connections. On the theoretical side, coordination of system inter-
actions, including the issues of cooperation, communication, and group formation, have to be
investigated. So, RoboCup is an ideal testbed for these two purposes.

The feature of including wireless components adds, apart from its other research issues, further
attractiveness to RoboCup as testbed for autonomous systems. The development of large-scale
networks for domestic and other private use will include quite some wireless components, as in-
dicated by most recent home-networking initiatives. Wireless networking makes life easier for the
common user, but on the system side, still many problems need to be solved.

3 The RoboCube as a “Universal” “Special-Purpose” Hard-
ware

RoboCup is not laid out as a single event, but as a long-term framework for fostering significant
scientific research. Within this framework, it is expected that robots, concepts and teams co-evolve
trough iterated competitions. As explained before, on-board control has to play an important role

IThe changing, partially unpredictable supply is a major problem for domestic exploitation of solar energy. The
standard solution of using a large buffer in form of many lead-acid-batteries is expensive, needs quite some storage
room, and is especially not very environment-friendly.

Figure 2: A picture of the RoboCube

within this process. For this purpose it must be possible to not only explore a multitude of team
and control approaches, but also the vast space of physical implementations of the robot players.
General body features — like speed, mobility, and so on — as well as special body features — like
e.g. shooting and dribbling capabilities — are like in real soccer the basis for successful performance.
It follows that the architecture of the robots must be flexible enough to allow physical changes
and add-ons without requiring substantial re-engineering. Unlike in commercial robots, it must be
possible to upgrade or add motors and other effectors, to use different sensors, and so on. Short, it
must be possible to explore the whole space of physical interactions between the robots, the ball,
and the rest of the environment.

But this flexibility has to be provided within the concrete limitations of the RoboCup regulations,
especially size constraints. Therefore, a careful design of a “universal” “special-purpose” hardware
is needed. The RoboCube is our attempt to provide the cornerstone for a conceptual framework
and the technological implementation of a system allowing the fruitful and effective investigation
of on-board control in the RoboCup small robots league.

The RoboCube evolved out of pure robot-control hardware developed in the VUB Al-lab. Begin-
ning in the mid-eighties up to now, various experimental platforms for behavior-oriented archi-
tectures have been build. In doing so, experiences with approaches based on embedded PCs and
different micro-controllers were gathered and lead to the Sensor-Motor-Brick II (SMBII)[Ver96].
The SMBII is based on a commercial board manufactured by Vesta-technology providing the com-
putational core with a Motorola MC68332, 256K RAM, and 128K EPROM. Stacked on top of
the Vesta-core, a second board provides the hardware for sensor-, motor-, and communication-
interfaces. The RoboCube is an enhanced successor of the SMBII. In RoboCube the commercial
computational core is replaced by our own design, also based on the MC68332, which saves signifi-
cant costs, and the architecture is simplified. In addition, the physical shape of RoboCube is quite
different from the one of the SMBII. First, board-area is minimized by using SMD-components
in RoboCube. Second, three boards are stacked on each other leading to a more cubic design

compared to the flat but long shape of the SMBII.

Figure 3: A picture of the main boards of the RoboCube

We demonstrated the versatility of RoboCube with our team that competed at RoboCup’98
[BWB*98]. This team consists of a heterogeneous set of robot-players, based on quite different
components. We combined for example shooting-mechanisms and fast agile drives for an offensive
type of player and a more precise drive-platform with good grip for a more defensive type of player.
In addition to these electro-mechanical components, it is also possible to exchange sensor-systems
and communication-facilities between the robots in a plug-and-play manner, or to add completely
new ones.

3.1 Overview of the Architecture

In order to have a very flexible architecture we chose for an open bus system. As shown in fig. 5
there is a global bus that comprises several sub-buses which are managed from different sources.

The system is logically divided into 6 subsystems:

1. The processor subsystem contains the Motorola MC68332 microcontroller. It provides the
address bus, data bus, special timing channels (TP), interrupt lines (/IRQ), several chip
selects (/CS), an SPI bus and an ordinary RS232 serial bus. The capabilities of the processor
are further described in subsection 3.3. Furthermore, a 1 MByte Flash-EPROM and a 1
MByte SRAM are included in this basic system.

2. The memory subsystem is separated from the processor because it then can easily be adjusted
to the necessary size. In its maximum configuration, it consists of 13 MByte of DRAM
memory.

3. The optional FPU subsystem provides a 25 MHz floating point unit.?

2There is also a 40 MHz version available, but at a rather high cost.

Figure 4: Cambridge University, UK, playing against the VUB Al-lab team at RoboCup’98. The
two robots in the center are part of the Cambridge team, the one in the front and the three in the
back are members of the VUB Al-lab team.

4. The extension busmaster subsystem provides two serial RS232 buses and two I12C buses for
which a broad variety of sensors and actuators ICs are available.

5. The I/0 subsystem contains all the interfaces needed in our current control for the robots.
In the current setup, there are the following I/O extensions with their proposed use available:

e binary inputs and outputs: switches, bumper, LEDs, hardware encoding of the ‘name’ of a
robot.

e infrared transceiver: simple obstacle avoidance, slow data transfer

e UHF transceiver: medium bandwidth data transfer (40 kBit/s, very small in size)

e analog-to-digital converters: measurement of light intensity, magnetic and sound sensors, ...
e special connectors decouple the devices from the central control:

— Motors: direct plug ins for motor controllers and shaft encoders
— SPI: extension

— TP: enables control of far away devices with possibly complicated timing

Data, Adr, /CS, /IRQ, TP, SPI, 2xI12C, 3xRS232

CPU Extension 110 Vision
Flash DRAM FPU Busmaster Subsystem| Subsystem
SRAM
Phe - /1
Phe 7
-7 - // !
-7 / !
- 1
1
Bin !
1) IR send :I
!
SPI ext |
IR recv !

P ext !
-_M otors

IADC/DAQ |/

UHFtrev]

—

Figure 5: Block diagram of the RoboCube architecture

3.2 Features and Capabilities

The system boots out of a 1 MByte Flash-EPROM which holds a basic input/output operating
system (BIOS) and offers space for a small file system. A huge part of the BIOS is dedicated to
the efficient handling of different actuators and sensors.
In the basic configuration the main memory consists of a 1 MByte low power SRAM. No wait
states have to be generated for that type of RAM. With the 24 bit address bus, the main memory
can be extended up to 16 MByte. Since 2 MByte are allocated by SRAM and EPROM and 1
MByte is reserved for the I/O-space, the DRAM subsystem allows 13 MByte of additional main
memory. Only when the DRAM performs a refresh cycle, the access to it causes some wait states.
But this will happen once every 200th processor cycle and thus, not slow down its performance.
There are 3 types of serial buses in the system. Serial buses allow to bridge long distances and
are usually simple to handle, but they offer normally only poor throughput. The main advantage
here is the small number of wires. First of all, we have 3 standard RS232 serial busses. Hence,
connecting a board to a host-computer is very simple. This is especially useful for debugging
and downloading software at startup. One of the RS232 connections is dedicated to the UHF
transmission system, which enables the communication to the board at run time.
The microcontroller offers a synchronous serial bus — the SPI bus. The SPI bus is fully duplex
and allows multiple bus masters. It has 4 address lines encoding the destination of the transfer.
Two additional lines carry the data in each direction (from and to the master). The relatively
large number of wires and the fact that only a few devices are available for this bus type make the
SPI bus unattractive for general usage. Nevertheless, there is the interesting option to attach a 64
bit CCD line segment, which implements a simple visual perception module, via this bus.

A very powerful bus is the inter IC bus from Philips (I?C). It is a synchronous bus that uses only
two lines. There are many devices available. The major features are:

e multiple masters
e bidirectional operation
e hardware bus arbitration

e hardware bit and byte level synchronization. This gives a slow device the opportunity to
adjust the transfer speed to its own capabilities and can force wait states during the transfer.

e 7 bit addresses

e maximum 100 kBit/s

On one of our I/O subsystem board based on the I2C, there are 24 analog input, 6 analog output
channels and 16 general purpose binary in/outputs available. The board uses only one of the
implemented 1?C-buses. Thus, by stacking a second 1/O subsystem board into a RoboCube, the
above numbers can be doubled.

One of the most striking features of the RoboCube is its size. With the size of 50mm x 60mm x
80mm, it is very small and compact. This layout relies on two special facts. First, all ICs are in
SMD packages. Second, we use a special stacking connector from AMP which builds the global
bus perpendicular to the boards plane. Hence, the system can be very easily extended by stacking
additional boards on top of the others. Finally, due to these two connector blocks the whole layout
gets mechanically very stable and guarantees secure connections.

3.3 The Motorola MC68332 Microcontroller

The MC68332 is a 32-bit integrated microcontroller in our case running at 25 MHz, combining high-
performance data manipulation capabilities with powerful peripheral subsystems. The subsystems
work independently from the main CPU32 instruction processing unit, thus allowing for a high
overall system performance.

The two most striking features of the microcontroller are:

e the very low power consumption. It consumes a maximum of 150mA at 5V. Measurements of
the current of the whole processor board (including Flash-EPROM and SRAM) turned out
a consumption of 60mA only. In standby mode, the processor is even specified for 0.1mA.

e the time processor unit (TPU). 16 microcoded channels for performing time related activities
from simple input capture or output compare to complicated motor control or pulse width
modulation are provided.

The MC68332 and its features are described in detail in [Mot95, Mot96b, Mot96a, Mot96c].

4 The Software Aspects of RoboCube

4.1 The RoboCube’s Basic Input/Output Operating System (BIOS)

RoboCube’s BIOS has a quite special design to address the specific needs for robotic control
[Ver96]. Besides the usual BIOS functionality like serial I/O for program download and debugging,

10

it provides the following additional core functions:

e Access to sensors and actuators

o Wireless communication interface management

The BIOS consists of a c-runtime environment, a set of low-level drivers for sensors and actuators
and a protocol engine for radio communication. The runtime environment provides a cooperative
multitasking scheme to run several threads in a round-robin schedule. These tasks consist of system
threads to service sensors and actuators and user threads. Each round-robin cycle is triggered by
a single timer interrupt that is triggered every 40 msec.

To have a simplified and uniform access to the different actuators and sensors, a system thread
regularly reads the sensors, pre-processes the sensor data and stores the results in its RAM. Then,
several application threads can access these values as a special type of local variable, a quantity,
without any additional delay since the sensor values are already stored in memory.

Since the actual read/write operations to the hardware are also triggered by the timer interrupt
every few milliseconds, sensors are read out in well-defined synchronized time intervals. This is
especially important for reading out pulse accumulators to get well-defined results. The actuators
are updated the same way, also in the same intervals.

The wireless communication interface provides radio communication between several stations with-
out any need for a designated master station. Each station is identified by a unique number (ID).
The data is transmitted in packets, which can be directed to only one other station (unicast),
several other stations (multicast) or all stations in the cell (broadcast). At the moment, no routing
is performed and all stations in a cell are assumed to be directly reachable.

The radio communication protocol provides two communication channels, one for reliable stream
communication and one for unreliable direct communication, comparable to TCP and UDP in the
TCP/IP protocol suite. The reliable stream communication channel provides automatic retrans-
mission of lost packets and proper packet reordering on reception. Since the protocol is only used
for direct station-to-station communication, no adaptive windowing has been implemented. In a
later version, adaptive windowing and multi-cell-routing could be implemented as well. Packets are
CRC-checked upon reception and are discarded, if the CRC-check fails. Each packet in the reliable
stream communication channel has to be acknowledged, non-acknowledged packets are assumed
to be lost and will be resent after a timeout.

To optimize the throughput of the communication channel without neglecting the reliability aspect,
the protocol engine uses two methods for obtaining transmission right on the shared medium, Time
Division Multiple Access (TDMA) and Carrier Sensed Multiple Access (CSMA). Each station has
its own time slot for transmission, and each station tries to identify its proper timeslot by listening
to packets from other parties, identifying their IDs and synchronizing the protocol’s time slots.
Then the station waits for its own timeslot. But before transmission really starts, the presence of
a carrier is checked. If no carrier is present, then the station starts to transmit. If, however, the
transmission gets interrupted by another station, a CRC mismatch will occur and the packet is
discarded upon reception. The receiving station will not acknowledge that packet and the packet
will be resent. If a packet-acknowledge is lost, the sender will send the well-received packet again,
but the recipient will discard the packet because a packet with the same packet sequence number
has already been received.

11

The wireless communication interface has its own UART , interrupt service routine and server
thread, therefore the communication is hidden from the application program, it only has to empty
the receive queue from time to time.

On the hardware side, the wireless communication interface is implemented with a Radiometrix
Bim433-F UHF Transceiver directly connected to the UART. This low power device can transmit
half-duplex serial data with 40kBit/s over about 30m and provides on-board carrier detection and
signal decoding circuits.

Although the protocol has been specially implemented for this architecture, it does not rely on any
special features of the hardware. In a student project, a implementation of the protocol engine for
windows 95 has been designed. This protocol engine serves as an application level gateway to the
Internet.

4.2 Using the RoboCube for Highlevel Control

Though the RoboCube has quite some computation power for its size, its capabilities are neverthe-
less far from those of desktop machines. So, it is not obvious that interesting behaviors in addition
to controlling the drive-motors and shooting can actually be implemented on the RoboCube, i.e.,
on board of the robots. Therefore, we demonstrate in this section that for example path-planning
with obstacle avoidance is feasible.

24 123(22|21 |20 |19 |18 | 17 | 16 | 15|14 |15 |16 | 17 | 18
2322|2120 |19 |18 |17 | 16 | 15 (14|13 |14 |15 | 16 | 17
22 2120|119 |18 | 17 | 16 | 15 | 14 |13 |12 |13 |14 | 15 | 16
21120(19| 18 |17 | 16 | 15 | 14 | 13 |12 |11 |12 |13 | 14 | 15
2019 (18|17 |16 | 15 | 14 | 13 | 12 (11 |10 |11 |12 | 13 | 14
191817 |16 | 15 | 14 | 13 | 12 | 11 | 10| 9 |10 |11 | 12 | 13
18 |17 (16| 15 | 14 | 13 | 12 | 11 |10 | 9 | 8 | 9 |10 | 11 | 12
19 |18 |17 | 16 | [X] | [X] | [X] | X] | [X]| 8 | 7 | 8 | 9 | 10 | 11
18 |17 (16 | 17 | [X] | [X] | [X] | [X] | [X]| 7 | 6 | 7 | 8 9 10
17 116 |15 | 16 | [X] | [X] | [X] | [X] | [X]| 6 | 6 | 6 | 7 8 9
16 |15 |14 | 15 | [X] | [X] | [X] | [X] | [X]| 5 | 4 | 5 | 6 7 8
15 |14 |13 | 14 | [X] | [X] | [X] | [X]|[X]| 4|3]| 4|5 6 7
14 | 13 | 12 | [X] | [X] | [X 6 5 4 312]13]4)|[X]|[KX
13 |12 | 11 | [X] | [X] | [X 5 4 3 211123 |[X|[KX
12 | 11 | 10 | [X] | [X] | [X 4 3 2 11012 |[X]|KX
11 10| 9 8 7 6 5 4 3 211]2 3 4 5
12 |11 |10 | 9 8 7 6 5 4 312]3] 4 5 6
13121110 | 9 8 7 6 5 4 |3]4]|5 6 7
14 |13 |12 | 11 |10 | 9 8 7 6 5|45 |6 7 8
15 |14 |13 12 | 11 | 10 | 9 8 7 6 |5 |6 |7 8 9

Figure 6: A potential field for motion-control based on Manhattan distances. Each cell in the grid
shows the shortest distance to a destination (marked with Zero) while avoiding obstacles, which
are marked with ‘[X]’.

Path planning is with most common approaches rather computationally expensive. Therefore, we
developed a fast potential field algorithm based on Manhattan-distances. Please note that this
algorithm is presented here only to demonstrate the computing capabilities of the RoboCube. A
detailed description and discussion of the algorithm is given in [Bir99].

Given a destination and a set of arbitrary obstacles, the algorithm computes for each cell of a grid

12

y
e

® —)
e T
| X;)OS x-l‘issll

Figure 7: The potential field (grey area) is not computed for the whole soccer-field. Instead, it is
limited in the x-direction to save computation time.

the shortest distance to the destination while avoiding the obstacles (figure 6). Thus, the cells can
be used as gradients to guide the robot. The algorithm is very fast, namely linear in the number of
cells. The algorithm is inspired by [Bir96], where shortest Manhattan distances between identical
pixels in two pictures are used to estimate the similarity of images.

The basic principle of the algorithm is region-growing based on a FIFO queue. At the start, the
grid-value of the destination is set to Zero and it is added to the queue. While the queue is not
empty, a position is dequeued and its four neighbors are handled, i.e., if their grid-value is not
known yet, it is updated to the current distance plus One, and they are added to the queue.

19 5

Has el

17 7

— virtual
1L T sensor |

Hs

Figure 8: Twenty-four so-called virtual sensors read the potential values around the robot position
on the motion grid. The sensor values can be used to compute a gradient for the shortest path to
the destination, which can be easily used in a reactive motion-control.

For the experiments done so far, the resolution of the motion-grid is set to lem. As illustrated in
figure 7, the potential-field is not computed for the whole soccer-field to save computation time.

13

Given a robot position pos and a destination dest, the field is restricted in the x-direction to the
difference of pos and dest plus two safety-margins which allow to move around obstacles to reach
the destination.

The motion-grid is used as follows for our soccer-robots. The global vision detects all players,
including opponents and the ball, and broadcasts this information to the robots. Each robot
computes a destination depending on its strategies, which are also running on-board. Then, each
robot computes its motion-grid. In doing so, all other robots are placed on the grid as obstacles.

Robots have so-called virtual sensors to sample a motion-grid as illustrated in figure 8. The sensor
values are used to calculate a gradient for a shortest path to the destination, which is ideal for a
reactive motion control of the robot. In doing so, dead-reckoning keeps track of the robot’s position
on the motion-grid.

frequency execution time

strategies)
[coordination, communication] 17-68Hz 4-13msec
path-planning 17- 19 Hz 79 msec
[obstacle-avoidance, short paths]
motion-control
[vectors, curves, dead-reckoning] 100Hz 0.2 msec
motor-control 100 Hz 0.1 mese
[PID-speed controller] ’
operating system .
[drivers, tasks, control-support] continuious

Figure 9: The path-planning is part of a four-level software architecture which controls the
robots players. It runs, together with the CubeOS operating system, completely on board of
the RoboCube.

Of course, the reactive control-loop can only be used for a limited amount of time for two main
reasons. First, obstacles move, so the motion-grid has to be updated. Second, dead-reckoning
suffers from cumulative errors. Therefore, this loop is aborted as soon as new vision information
reaches the robot, which happens several times per second, and a new reactive controller based on
a new motion-grid is started.

Figure 9 shows performs-results of the path-planning algorithm running on a RoboCube as part
of the control-program of the robot-players. The different tasks of the control-program proceed
in cycles. The execution time refers to a single execution of each task on its own (including the
overhead from the operating system). The frequency refers to the frequency with which each tasks
is executed as part of the player-control, i.e., together with all other tasks.

The control-program consists of four levels which run together with the CubeOS completely on-
board of the RoboCube. The two lowest levels of motor- and motion-control run at a fixed frequency
of 100 Hz. Single iterations of them are extremely fast as the TPU of the MC68332 can take over
substantial parts of the processing. The strategy and path-planning level run in an “as fast as
possible”-mode, i.e., they proceed in event-driven cycles with varying frequencies.

14

The execution of the pure strategy-code, i.e., the action-selection itself, takes up only a few mil-
liseconds. Its frequency is mainly determined by wether the robot is surrounded by obstacles or
not, i.e., wether path-planning is necessary or not. The computation of the motion-grid takes most
of the 79 msec needed for path-planning. As two grids are used, one still determines the motion
of the robot while the next one is computed, the cycle-frequency is at least 17 Hz. So, in a worst
case scenario where the player is constantly surrounded by obstacles, the action-selection cycle can
still run at 17 Hz.

5 Conclusion

In this article, we presented the most recent version of our RoboCube, a “universal” “special-
purpose” robot-controller. It is somehow universal as it allows an easy and flexible construction of
a multitude of players. For this purpose, the RoboCube provides quite some computation power
and memory as well as a multitude of I/O-interfaces. It is at the same time a kind of special-
purpose solution as it is tailored to fit the particular needs and constraints of the small robot
league. It facilitates the use of many sensors and effectors, including the support from its BIOS to
access them in high-level programs.

Concretely, RoboCube has a open bus architecture which allows to add “infinitely” many sensor/motor-
interfaces (at the price of bandwidth). But for most applications, including playing soccer, the stan-
dard set of interfaces should be more than enough. RoboCube’s basic set of ports consists of 24 ana-
log/digital (A/D) converters, 6 digital/analog (D/A) converters, 16 binary Input/Output (binI/O),

5 binary Inputs, 10 timer channels (TPC), 3 DC-motor controller with pulse-accumulation (PAC),
and a wireless 40 kBit communication channel.

As mentioned before, the access to these ports is supported for high-level programming languages,
especially C. In addition, software modules exist to ease the direct usage of complete sensor- and
effector-systems, like e.g. for motion-control. But not only lowlevel sensor-motor behaviors can
run on board of the RoboCube. To demonstrate its capabilities with an example, we described the
implementation of a path-planning algorithm with obstacle-avoidance on board of the robots.

Acknowledgments

Many thanks to all current and former members of the VUB Al-lab, especially Dany Vereertbrug-
ghen who developed the SMBII.

Andreas Birk is a research fellow (OZM-980252) of the Flemish Institution for Applied Research
(IWT). Research on the RoboCube is partially funded with the TMR-grant “Development of an
universal architecture for mobile robots” (ERB4001GT965154).

The VUB Al-Lab RoboCup team thanks Sanders Birnie BV as supplier and Maxon Motors as
manufacturer for sponsoring our motor-units.

References

[Asa98] Minoru Asada. Posting on august 4. RoboCup small robots mailing-list, 1998.

15

[Bir96]

[Bir99)

[BWB+98]

[FK97]

[HGS7]

[TWO8]

[KAK*97]

[KTS+97]

[Mae90]
[Mot95]

[Mot96a]

[Mot96b]

[Mot96¢]

[Ste95)

[Ver96]

Andreas Birk. Learning geometric concepts with an evolutionary algorithm. In Proc. of
The Fifth Annual Conference on Evolutionary Programming. The MIT Press, Cam-
bridge, 1996.

Andreas Birk. A fast pathplanning algorithm for mobile robots. Technical report, Vrije
Universiteit Brussel, AI-Laboratory, 1999.

Andreas Birk, Thomas Walle, Tony Belpaeme, Johan Parent, Tom De Vlaminck, and
Holger Kenn. The small league robocup team of the vub ai-lab. In Proc. of The Second
International Workshop on RoboCup. Springer, 1998.

Masahiro Fujita and Koji Kageyama. An open architecture for robot entertainment.
In Proceedings of Autonomous Agents 97. ACM Press, 1997.

L.O. Herzberger and F.C.A. Groen, editors. Intelligent Autonomous Systems. Elsevier
Science Publishers, 1987.

Nicolas R. Jennings and Micheal R. Wooldridge, editors. Agent Technology; Founda-
tions, Applications, and Markets. Springer, 1998.

Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.
Robocup: The robot world cup initiative. In Proc. of The First International Confer-
ence on Autonomous Agents (Agents-97). The ACM Press, 1997.

Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia Coradeschi, Eiichi
Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The robocup synthetic
agent challenge 97. In Proceedings of IJCAI-97, 1997.

Pattie Maes, editor. Designing Autonomous Agents. The MIT Press, 1990.

Motorola. Mc68332 user’s manual. Technical Report http://mot-
sps.com/mcu/documentation/pdf/332um.pdf, Motorola Literature Distribution,
1995.

Motorola. M68300 family cpu 32, reference manual. Technical Report http://mot-
sps.com/mcu/documentation/pdf/cpu32rm.pdf, Motorola Literature Distribution,
1996.

Motorola. Mc68332 technical summary. Technical Report http://mot-
sps.com/mcu/documentation/pdf/332tsr2.pdf, Motorola Literature Distribution,
1996.

Motorola. Time processing unit (tpu) reference manual. Technical Report http://mot-
sps.com/mcu/documentation/pdf/tpurm.pdf, Motorola Literature Distribution, 1996.

Luc Steels, editor. The Biology and Technology of Intelligent Autonomous Agents.
NATO ASI series. Springer, 1995.

Dany Vereertbrugghen. Design and implementation of a second generation sensor-
motor control unit for mobile robots. Technical Report Thesis, Tweede Licentie
Toegepaste Informatica, Vrije Universiteit Brussel, Al-lab, 1996.

16

