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Abstract

The so-called CubeOS is a special software environment for behavior-oriented robotics.
It ranges from a dedicated nano-kernel and hardware drivers for a broad set of
sensors and actuators over operating system support for concurrent and real-time
programming to a special high-level language suited for novices in the field. As most
special feature, the CubeOS framework includes a novel scheduler, designed for the
particular needs of behavior-oriented robotics.
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1 Introduction

The field of robotics has undergone tremendous changes since the mid-eighties
on the commercial as well as on the scientific side. The robotics market un-
til the mid-eighties was almost completely dominated by robot-arms used
in industrial manufacturing. Meanwhile, service robots [Eng89], edutainment
robots [ADB00], and various smaller niches [Bir98a| broadened and extended
the robotics market. On the scientific side, the novel branch of so-called
behavior-oriented robotics [Ark98] emerged, following Brooks’ famous critique
on “classic” Al and robotics [Bro91,Bro86b,Bro86a]. These two simultaneous
shifts in focus, sometimes even dubbed revolutions, came along with a series of
fundamental up to philosophical debates. Especially, the notion of “behavior”,
which runs as a red thread through both shifts, is used within a wide range
of interpretations and definitions as pointed out for example in [Ste94a].
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As behavior-oriented robotics and its applications become more and more ma-
ture, it is time to focus on efficient implementations of its principles instead
of keeping on discussing what these principles are. Here, we deal with a “be-
havior” from a software engineering viewpoint, namely as a software process
with a particular set of properties. The most important one is that several
behaviors can be “active” at the same time. From a practical viewpoint, this
means that behaviors must be executed in (pseudo-)parallel, i.e., there must
be support for concurrent programming. In addition, a software environment
for behavior-oriented robotics obviously deals with control. Hence, there must
be support for real-time processes, ensuring guaranteed time-related qualities
of service. Existing behavior-oriented programming languages like the sub-
sumption architecture [Bro86b,Bro90] or motor schemas [Ark87,Ark92] came
out of early scientific work in this field. Accordingly, they did not incorporate
any considerations on efficiency or software-engineering, forcing the user to do
a lot of hand-tailoring for each particular application. As a consequence, these
languages are not widely distributed. Instead, the complete software environ-
ment for every behavior-oriented project around the globe is usually developed
from scratch.

The so-called CubeSystem-project is an attempt to overcome this situation.
The CubeSystem is a kind of advanced construction-kit for robotics, includ-
ing hardware as well as software components. The software side, on which we
focus here, centers around the so-called CubeOS, a special operating system
designed to support behavior-oriented programming. First of all, it features
standard programming constructs for real-time and concurrent programming
[BW97,Mel83,You82|. Furthermore, it supports a wide range of devices em-
ployed in the CubeSystem through libraries and it facilitates the development
of new drivers to incorporate further devices, let it be sensors, actuators,
or computational hardware. Last but not least, it features a novel scheduling
scheme designed for behavioral processes. This so-called B-scheduling can han-
dle behaviors running on different time-scales represented through so-called
exponential effect priorities. It is usually neglected that behavioral processes
can span very different time-periods. A process doing pulse-width-modulation
(PWM) has for examples to operate for some DC-motors in the 20 kHz range,
i.e., on a time-basis of 5 - 1075 seconds. A behavior monitoring batteries in
contrast operates on a scale of minutes. Some adaptive or learning behav-
iors can operate on much higher scales like hours or even days. The idea of
exponential effect priorities is therefore to cover a wide range of time-scales.
Hence, the periodicity of a process is halved when its priority value is increased
by one. Scheduling processes with such widely spread periods is a non-trivial
task. The novel scheme of B-scheduling results in guaranteed performance re-
garding the periodicity of the processes, a very important feature for control,
while eliminating idle-time, i.e., B-scheduling achieves time-optimal execution
of processes.
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Fig. 1. A picture of the RoboCube (left) and the layout of its internal bus structure
(right).

The rest of this article is structured as follows. Section two gives a short
overview on the hardware side of the CubeSystem and presents some of the
applications where it is employed. In section three, the basic technical details of
the CubeOS are introduced. Section four introduces B-scheduling and presents
results. In section five, the process description language (PDL) as high-level
option to program with CubeOS is shortly presented. Section six concludes

the article.

2 The Hardware-Side of the CubeSystem

2.1 The RoboCube as Embedded Controller

The CubeOS runs on different hardware platforms [Ken00]. The so-called
RoboCube (figure 1) is the most important one within the CubeSystem. The
RoboCube [BKW00,BKW98] has a open bus architecture which allows to add
“Infinitely” many sensor/motor-interfaces (at the price of bandwidth). But for
most applications the standard set of interfaces should be more than sufficient.

RoboCube’s basic set of ports consists of

e 24 analog/digital (A/D) converter,

e 6 digital/analog (D/A) converter,

e 16 binary Input/Output (binl/O),

e 5 binary Inputs,

e 10 timer channels (TPC),

e 3 DC-motor controller with pulse-accumulation (PAC)

The basic RoboCube features a 32-bit processor, the Motorola MC68332, 1
Mbyte Flash-EPROM, and 1 Mbyte SRAM. The RoboCube is extremely com-



Fig. 2. The drive unit (left) as a mechanical building-block, which can be integrated
into several different robots for the RoboCup small size league, like e.g. the ones
shown on the right.

pact, namely 50 mm x 60 mm x 80 mm, as special stacking connectors are
used to build the global bus perpendicular to the plane of the boards. The
system can therefore be easily extended by stacking additional boards on top
of the others. This layout is also mechanically very stable and guarantees se-
cure connections. It leads to a cubic form of the controller, hence the name
RoboCube. RoboCubes can be networked together with host-PCs via several
serial ports or in a wireless manner via special RF-modules included in the
CubeSystem.

2.2 A Versatile System

One application of the CubeSystem is within the Small Robots League of
RoboCup, the worldchampionship of robot soccer [KAK197 KTST97]. There,
the computational core is used together with specially engineered, solid me-
chanical building blocks (figure 2). The main research themes for this team
are on-board control and the exploitation of heterogeneity [BK99]. A detailed
description of the team is found in [BWBK99,BWB*98].

The infrastructure for the Small Size team is also used for educational work
that originated at the Vrije Universiteit Brussel (VUB) and that is now con-
tinued at the International University Bremen (IUB). In addition, mid-sized
robots based on the CubeSystem and mechanical construction kits (figure 3)
have been used for a course on Autonomous Systems at the VUB and the
German University of Koblenz-Landau. The course consists of a theoretical
lecture and practical exercises where the students build and program robots

[ADB+00].

The so-called VUB ecosystem is an other robotic environment where the



Fig. 3. Different mid-sized robots based on the CubeSystem and mechanical com-
ponents from Fischertechnik”™ (left) and Lego’™ (right).

Fig. 4. A partial view of the so-called ecosystem (left) with a charging station, one
of the mobile robots and one of the so-called competitors. Mobile robots (right) can
operate over extended periods in time in the ecosystem by autonomously re-charging
their batteries. The competitors establish a kind of working task.

CubeSystem provides the infrastructure. In the basic ecosystem (figure 4),
mobile robots stay operational over extended periods in time by autonomously
re-charging their batteries [Bir97]. So-called competitors establish a working
task, such that the robots are kept busy [Ste94b,McF94]. In an extended ver-
sion, robots also face dangerous situations which must be avoided [BB97].
Despite its simplicity, the VUB ecosystem provides many possibilities for re-
search on various subjects including basic economic concepts [BW98], learn-
ing [Bir98b,Ste96a,Ste96b], heterogeneity [BBIS|, cooperation [BWO00], trust
[Bir00a,Bir00b], and many more. In addition to education and basic research,
the CubeSystem is incorporated in industrial projects. One is the so-called
RoboGuard (figure 5), a semi-autonomous robot for surveillance applications,
marketed by the Belgian SME Quadrox.
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Fig. 5. The inside core of the RoboGuard base, a commercial semi-autonomous
robot for surveillance applications.

3 Imnside the CubeOS

As motivated in the introduction, CubeOS was developed as a modularized
realtime executive for behavior-based robotics. The CubeOS target code con-
sists of a small memory footprint nanokernel, a number of sensor- and actuator
software drivers and a network stack for wireless communication. The applica-
tion and the necessary parts of the target code are linked together on the host
system to form the binary application image that is then downloaded into the
RoboCube hardware. The target code consists of the following core modules:

e The Nanokernel provides basic OS functionality. Among others, it imple-
ments multithreading, interrupt service, IPC, semaphores and mutexes,
timer and clock functions, basic i/o and system initialization and config-
uration services.

e The Network Stack implements functions to communicate over a simple
wired or wireless network and for platform-independent data exchange.

e The CubeOS API provides access to all the kernel and driver functions. It
is a subset of the POSIX standard which is enhanced by several additional
functions.

Access to sensors and actuators is provided by a library of functions that in
turn uses the CubeOS API for accessing the hardware. By using this layered
approach, the framework hides the details and provides the user with a sim-
ple interface to control the sensor- and actuator devices of the system. The
internal realtime clock of the nanocore provides millisecond resolution. This
clock is also used to trigger the preemption of the application threads by the
nanocore scheduler and to drive the CubeOS functions that deal with time.
The nanocore’s internal scheduler is a preemptive round-robin scheduler with



priorities. It is mainly used to provide CPU time to the internal CubeOS ser-
vices such as communication. Although the internal CubeOS threads have a
higher priority than the application program, they are often suspended, and
therefore leaving most of the CPU time to the application program. The in-
ternal network stack implements a layered communication infrastructure. Its
lowest level is formed by a hardware-triggered state machine that receives a
stream of bytes. It breaks it into frames which are then presented to the higher
protocol layers. These run within the nanocore multithreading and are using
the nanocores IPC mechanisms to communicate. Depending on the applica-
tion, there are multiple internal communication layers which provide media
arbitration, resend of lost data, packetizing and depacketizing of streams, and
platform-independent data encoding (XDR).

4 Priorities and Efficient Scheduling

4.1 Exponential-Effect Priorities

It is often neglected that behavioral processes can span very different time-
periods. A process doing pulse-width-modulation (PWM) has for examples
to operate for some DC-motors in the 20 kHz range, i.e., on a time-basis of
5-107° seconds. A behavior monitoring batteries in contrast operates on a
scale of minutes. Some adaptive or learning behaviors could operate on much
higher scales like hours or even days. So, it is desirable to span several or-
ders of magnitude for the time-periods of different processes. A linear priority
scheme is not suited for this. Therefore, so-called exponential effect priorities
are introduced here. The idea is that for each increase in a priority-value by
one, the periodicity is halved.

In the remainder of this article the following naming conventions are used:

the set of processes: P= {po,...,pn_1}

the priority-value of process p;: pv[p;]

the set of processes with priority k£ or the k-th priority class: PCj
the highest used priority-value: maxpv

So, the exact semantic of a priority-value pv[p;] of process p; within exponential
effect priorities is:

e pu[p;] = 0 <= p; is executed with the maximum frequency f,
e pulp;] = n < p; is executed with the frequency f, which is half the
frequency of the previous priority-class, i.e., f, = fn_1/2



1 /* Initialization */
2 /* computing the initial wait-values for each process p;q */
3 quicksort(P)
4 pc=1
5 start=20
6 Niors = 1
7 Vied{0,..,marpv — 1} : {
8 start = 2 - start
9 Nglots = 2 * Nslots
10 Vid with pv[p;a) = pc : {
11 wait|p;q] = reverse((start +id) modulo ngs)
12 }
13 start = (start + #{pia | pv[pia) = pc}) modulo ng s
14 pc=pc+1
15 }

Fig. 6. The initialization of B-scheduling.

name pl.l pl.2 pl3d p2.1 p22 p3.1l pdl pd2 pd3

pol] 1 1 1 2 2 3 4 4 4
2pv[] 2 2 2 4 4 8 16 16 16
wait 0 1 0 1 3 0 4 12 2

Table 1

A set of processes with their priority-values pv[], their according waiting-time be-
tween executions, and their initial wait values calculated with the algorithm shown
in figure 6. The wait values lead to the schedule shown in table 2 when the B-
scheduler (figure 7) is invoked.

4.2  B-Scheduling

For solving the task of finding a suitable order of execution of the processes,
we use a cyclic executive scheduling approach [BW97]. This means there is
a so-called major cycle, which is constantly repeated. The major cycle con-
sists of several so-called minor cycles. Each minor cycle is a set of processes,
which are executed when the minor cycle is activated. The general problem
of finding a suitable schedule within this approach is NP-hard as it can be re-
duced to the Bin-Packing-problem in a straight-forward manner. We present
an extremely efficient, namely linear-time algorithm, which is based on the
restriction to exponential-effect-priorities. As motivated above, we do not see
this as a limitation, but even as a feature.



1 /* Execute the Major Cycle */
2 for(round = 0; round < np.; round = round + 1) {
3 /* Execute the Minor Cycle */
4 1d=0
5 done = 0
6 while( (done < perfect) N (id < #P) ) {
7 if(wait[pig] == 0) {
8 execute p;y
9 wait[p;y) = 27VPidl
10 done = done + 1
11 )
12 id=1d+1
13 }
14 Vpia € P : if(wait[pia] > 0) 1 wait[pia] = wait[p;] — 1
15 }

Fig. 7. The execution of a B-schedule.

B-scheduling is implemented in CubeOS with C. Figure 6 and figure 7 show
the critical parts of B-scheduling in a pseudo-code. An important variable in
both parts is wait[p;q]. It specifies for each process p;y how long it has to
wait in number of cycles until it is executed again. During the execution of
a B-schedule (figure 7), wait is constantly decremented in each cycle. When
a process p;q is executed, its wait wait[p;4] is set to opvlpial - Therefore, the
execution of p;4 is spread evenly over the minor cycles in the major cycle.

The dynamic execution part of a B-schedule (figure 7) is more or less straight-
forward. The “real magic” is done in the static initialization of the wait-values
(figure 6). Note that the initial value of wait[p;4] determines in which minor
cycle p;q will be executed for the first time. So, computing suited initial waits
produces a B-schedule. Note, that the number of wazit-values is equal to the
number of processes #P. So, the complete schedule which is of size O(2%#7) is
represented in a single variable for each process, i.e., in the overall size O(#P).

Before discussing the initialization of the wait-values in more detail, a special
command from figure 6 has to be explained. The reverse () is used to reverse
the bit-order of a binary number. More concretly, let B, = [bg, ..., b,_1] and
R, = [ro, ..., 1] denote two binary numbers, each represented as array of
bits b;, respectively r;. The function reverse() is then defined as:

reverse(B,) = R, with r;, = b, ;



minor cycle processes within

number the cycle
0 pl.1 pl.3 p3.1
1 pl.2 p2.1
2 pl.1 pl.3 p4.3
3 pl.2 p2.2
4 pl.1 pl.3 p4.1
) pl.2 p2.1
6 pl.1 pl.3
7 pl.2 p2.2
8 pl.1 pl.3 p3.1
9 pl.2 p2.1
10 pl.1 pl.3
11 pl.2 p2.2
12 pl.1 pl.3 p4.2
13 pl.2 p2.1
14 pl.l pl.3
15 pl.2 p2.2

Table 2

A simple example of a major cycle computed with B-scheduling. The notation pX.Y
denotes process number Y within priority-class PC'x. Note that there is no straight-
forward distribution of dirty and perfect cycles, i.e., minor cycles which consist in
this example of either two or three processes.

The main idea when computing suited initial wait-values is as follows. Imagine
a set S of natural numbers with a cardinality equal to a power of 2. Let
S(start,d) denote a sequence which begins at the number start and “jumps”
further to numbers x which are distance d away, i.e., x = (k - d)modulo#S
with £ € IN . When start and d are powers of 2, S is called harmonic. It
holds that for each harmonic list .S, we can create two harmonic lists S; and
S, such that S = S; U Sy, namely:

e S; = S(start,2-d)
e Sy = S(start+d/2,2-d)

The overall set S can be expressed as S(0,1). It can recursively be divided in
smaller lists and sublist.

When computing the initial wait-values, the goal is to distribute processes
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such, that the minor cycles are equally filled up. Each execution process of
class PCy can be seen as a list S(start, 2m9P*~k) of minor cycles. The first
value for start is zero, i.e., the first slot in the first minor cycle is used. The
distance d is 2m@Pv=rvlpol From then on, further lists can be computed. The
difficulty is to keep track of the start position. Especially, so-to-say left-overs,
i.e., empty lists not used up by class PCj_q, have to be used when the class
PC_1 is handled.

Table 1 shows as an example a set of processes with their priority-values pv|],
their according waiting-time 27l between executions, and their initial wait
values calculated with the algorithm shown in figure 6. The interested reader
can try to find a time-optimal, well balanced schedule of the processes (of
course without using the pre-computed wait-values). The time-optimal, well
balanced schedule computed by B-scheduling is shown in table 2.

5 High-level Language Support

The so-called Process Description Language (PDL) was introduced in [Ste92]
and later on extended [BKS00]. PDL provides behavior-oriented programming
functionality in a high-level language format on top of CubeOS. Therefore, it
facilitates an easy start for novices to the field as has been proven in various
educational activities. PDL enables the efficient description of a network of
dynamical processes in terms of variables whose state changes at the beginning
of each program execution cycle.

The basic PDL-programming constructs are:

quantity : A bounded variable ¢, i.e., a variable with fixed minimum and
maximum value. Sensor- and motor-values are represented by basic quanti-
ties which can only read, or respectively be written.

process : A piece of program which is executed in (virtual) parallel with
other processes in so-called PDL-cycles.

value(q) : This function returns the value of the quantity ¢ from the previous
PDL-cycle.

add_value(q, €) : This procedure influences the value of a quantity ¢ by sum-
ming the evaluation of the expression e to q. The change takes only effect at
the end of the PDL-cycle in which the procedure was activated. Note that
other add-value commands in the same process or in other processes can
influence ¢ at the same time.

dt () : this function returns the time-difference between the start of the recent
PDL-cycle and the start of the previous PDL-cycle

In the implementation in the CubeOS framework, the quantities are repre-
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sented by a struct datastructure that holds both the current and the future
numerical value. All native numerical datatypes of C can be used here, i.e.
float or short, however, the programmer has to take care of the specific
properties of the datatype to prevent overflows or imprecisions. The PDL pro-
cesses are implemented as simple argumentless C functions that do not return
values. Instead, the only data exchange with other parts of the program are
implemented through the access functions to quantities which are global vari-
ables. The access functions value(q) and add_value(q,x) are implemented
as macros to increase efficiency. To make the PDL runtime system aware of
the presence of a PDL process, a special C function add_process() is imple-
mented that takes the C-function implementing the PDL process as argument.
By calling the run_pd1() function, the application program then invokes the
B-scheduler as one thread of the internal CubeOS multithreading that in turn
executes the predefined PDL processes.

6 Conclusion

The article described a software environment for behavior-oriented robotics.
This environment is constructed around CubeOS, a special operating frame-
work, from a dedicated nano-kernel and hardware drivers for a broad set of
sensors and actuators over operating system support for concurrent and real-
time programming to a special high-level language suited for novices in the
field. The CubeOS is the software part of the CubeSystem, a kind of con-
struction kit for behavior-oriented robotics which is successfully used in a
constantly growing number of applications.

The CubeOS is not only an engineering effort for providing useful software
functionality within a behavior-oriented robotics background. In addition, the
CubeOS framework includes a novel scheduler, designed for the particular
needs of behavior-oriented robotics. This so-called B-scheduling can handle
behaviors running on different time-scales represented through so-called ex-
ponential effect priorities, covering a wide range of time-scales. Concretly, the
periodicy of a process is halved when its priority value is increased by one.
Scheduling processes with such widely spread periods is a non-trivial task. The
novel scheme of B-scheduling results in guaranteed performance regarding the
periodicy of the processes, a very important feature for control, while eliminat-
ing idle-time, i.e., B-scheduling achieves time-optimal execution of processes.
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